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Abstract

Hlavním cílem předložené práce bylo vytvoření první verze multilingválního rozpozná-
vače řeči pro vybrané 4 západoevropské jazyky. Klíčovým úkolem této práce bylo de-
finovat vztahy mezi subslovními akustickými elementy napříč jednotlivými jazyky při
tvorbě automatického rozpoznávače řeči pro více jazyků. Vytvořený multilingvální sys-
tém pokrývá aktuálně následující jazyky: angličtinu, němčinu, portugalštinu a španěl-
štinu. Jelikož dostupná fonetická reprezentace hlásek pro jednotlivé jazyky byla různá
podle použitých zdrojových dat, prvním krokem této práce bylo její sjednocení a vy-
tvoření sdílené fonetické reprezentace na bázi abecedy X-SAMPA. Pokud jsou dále
acoustické subslovní elementy reprezentovány sdílenými skrytými Markovovy modely,
případný nedostatek zdrojových dat pro trénováni může být pokryt z jiných jazyků.
Dalším krokem byla vlastní realizace multilingválního systému pomocí nástrojové sady
KALDI. Použité jazykové modely byly na bázi zredukovaných trigramových modelů zís-
kaných z veřejně dostupých zdrojů. První experimenty byly realizovány pro monoligvální
systémy pro výše zmíněné jazyky za účelem získání referenční informace o dosažitelné
přesnosti. Následné použití sdíleného jazykového modelu napříč jazyky vedlo k určitému
snížení přesnosti rozpoznávání, avšak tato byla nadále velmi vysoká. Nejmenší chyba
na úrovni slov (WER) se pohybovala mezi 8.55% a 12.42% pro angličtinu a španělštinu.
Další dosahované výsledky pro zbývající jazyky odpovídaly velikosti a kvalitě dostup-
ných zdrojů pro získání akustických a jazykových modelů v navrženém rozpoznávacím
systému.

Klíčová slova

multilingvální rozpoznávání řeči, akustické modelování, GMM-HMM, rozpoznávání spo-
jité řeči s velkým slovníkem, LVCSR, KALDI, GlobalPhone, Wall Street Journal, X-
SAMPA, IPA
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Abstract

The main goal of this work was to create the first version of a multilingual speech
recognition system for selected four West-European languages. A crucial task of this
work was to establish a relationship between subword acoustic units across particular
languages which is the core for building of automatic speech recognition (ASR) system
for multiple languages. The built multilingual ASR system, up to date, covers the fol-
lowing languages: English, German, Portuguese, and Spanish. Because the phonetic
unit representation differed for particular language depending on the database used,
the first step was intended to define a general shared phonetic representation based
on X-SAMPA. When acoustic phonetic units represented by hidden Markov models
(HMMs) are shared, the lack of certain missing training acoustic resources can be then
complemented among languages. The following step was to implement the multilingual
speech recognition system using KALDI speech recognition toolkit. Language models
finally implemented were statistical pruned trigram ones and they were obtained from
publicly available resources. The first experiments were carried out across monolingual
systems to identify what recognition accuracy could be obtained. Further incorpora-
tion of the shared acoustic modeling yielded a reduction in term of accuracy, however,
high accuracy results were still obtained. The best word error rates (WER) fluctuate
between 8.55% and 12.42%. These values correspond to English and Spanish language
respectively. Among the results, it was also found that for particular languages, the
accuracy strongly depends on the size and quality of available resources for obtaining
both acoustic and language models used in designed ASR system.

Keywords

multilingual speech recognition, acoustic modeling, GMM-HMM, large vocabulary con-
tinuous speech recognition, LVCSR, KALDI, GlobalPhone, Wall Street Journal, X-
SAMPA, IPA
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1 Introduction

Back in time, applications such as voice dialing, voice control, data entry or dictation
included ASR applications. Nowadays, ASR technology has rapidly advanced because
of the exponential growth of big data and computing power, and more challenging
applications are becoming a reality. Instances are machine translation, in-vehicle nav-
igation, etc. From these examples it can be discerned that more advanced speaker
independent ASR applications capable of supporting several languages simultaneously
are needed.

Despite ASR systems have almost reached human performance, there are many reasons
why 100% accuracy in the recognition task cannot be achieved. Some challenges that
have hampered such error-free recognition achievement are bound to the nature of
speech. The absence of pauses between spoken words, local rates of speech within and
across speakers in different contexts are some difficult tasks the recognizer has to deal
with. In addition to this, the flexibility of the language and its size can also make the
recognition task even more convoluted. For example, in large vocabulary continuous
speech recognition (LVCSR) it is more likely to have more words that sound like each
other and thus the distinction between words becomes more difficult to achieve.

Further difficulties can be found when a recognition system is intended to perform
the recognition task for multiple languages, i.e, when the system is required not to
be monolingual any longer. Challenges and labours such as the collection of large
data resources (texts, voice recordings, pronunciation lexicons, and parsing grammar),
memory constraints and response times are inevitably encountered. Gathering this
information not only takes considerable time, but also financial resources since difference
fields of expertise are needed. It is said that building a LVCSR system requires dozens
of hours of recording in order to ensure a dictionary coverage on the order of 100000
words, and matching pronunciation dictionaries to guide the decoding procedure. To
efficiently deal with the enormous task of covering different languages while reducing
the resource requirements has lastly been subject of study by the research community.
Model-level tying techniques, usage of graphemes as lexical units, and pronunciation
estimators, are some instances of the proposed solutions. The aim of this work is
to explore an efficient approach, based on a unified global phone representation to
eliminate the resource preliminary conditions by applying acoustic model combinations
of those shared defined phones. Encouraging results can be found through a literature
review in monolingual systems. Word error rates that just a few years ago were 14%
have recently dropped to 5% [1]. Despite the unavoidable accuracy degradation when
implementing shared parameters in multilingual systems [2], to achieve a WER as low
as possible is the motivation of this recogniser design.

In the following section, chapter 2, it is presented the most prominent forming com-
ponents of ASR systems as well as the theoretical foundations of the statistical speech
recognition. Presentation of the original phonetic alphabet incorporated per language
can be found in chapter 3, as well as the procedure to resolved the X-SAMPA conver-
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1 Introduction

sion on the basis of the International Phonetic Association (IPA). Chapter 4 provides a
description of data used, the modifications and additions incorporated in the standard
KALDI recipe, and the experiment results. The latest mentioned matter, experiment
results, is subdivided according to the followed methodology to develop the system.
The first subsection shortly shows the results obtained by a preliminary or introduc-
tory test. The second subsection presents the results that can be obtained when each
database is independently used to build different monolingual systems, while the third
subsection reflects in terms of accuracy the impact of implementing an acoustic shared
model. To wrap this work thesis up, conclusions are presented in chapter 5 together
with a short discussion of possible future work.

2



2 HMM Based ASR framework

In a statistical ASR approach, the goal is to find the most likely word sequence ̂︁𝑊 given
the acoustic observation 𝑋 = {𝑥1, ..., 𝑥𝑡, ...𝑥𝑇 }, where 𝑡 denotes the frame number and
𝑇 the total number of frames. This is formally state in Eq. (1) where W is the set of
all possible word sequences of a given vocabulary

̂︁𝑊 = arg max
W∈𝑊

𝑃 (𝑊 |𝑋) (1)

From Eq. (1) it can be seen that speech recognition is formulated as a maximum apos-
teriori (MAP) decoding problem. Unfortunately, aposteriori probabilities cannot be
directly calculated, consequently this probability has to be decomposed using Bayes
rule. The restatement is shown in Eq. (2) where 𝑃 (𝑋|𝑊 ) is likelihood of the acoustic
observation sequence 𝑋 given a word sequence 𝑊 , and 𝑃 (𝑊 ) is the prior probability
of a word sequence 𝑊 .

̂︁𝑊 = arg max
W∈𝑊

𝑃 (𝑋|𝑊 )⏟  ⏞  
acoustic model

𝑃 (𝑊 )⏟  ⏞  
language model

(2)

Technically speaking, the term 𝑃 (𝑋) should appear in the denominator; however, it is
disregarded because it remains constant during the recognition [3]. The Eq. (2), also
known as the fundamental equation of statistical speech recognition, defines the crucial
constituents of this statistical speech recognition approach. The term on the left hand
side is referred as the acoustic likelihood. The second term on the right hand side is
the prior probability known as language model.

The architecture of a typical large vocabulary, speaker-independent, continuous speech
recognition system is shown schematically in Fig. 1. It consists of a front-end module
and a back-end module. In the next subsections the different processing stages of an
ASR system are concisely described.

2.1 Front-end: feature extraction

Speech sound may be considered as a convolution of two independent components as
shown in Fig. 2, where 𝑒[𝑛] denotes the airflow at the vocal chords (excitation), and
ℎ[𝑛] is the resonance of the vocal tract. The phonetic content is mostly dependent on
the characteristics of the vocal tract filter. Thus the front-end module tasks are:

∙ Separation of the individual components. Technically, it alludes to the deconvolu-
tion of the source and the filter.

∙ Emphasize relevant properties of the acoustic signal for speech sound classification,
while reducing redundant information.

3



2 HMM Based ASR framework

Speech

/b/

Feature extraction Decoder

Language model

Sentence
level matcher

Lexicon

Word-level
matcher

Acoustic Model

Text

Phone-matcher level

/b/

/b/
/d/
.
.
.
/ch/

/m o/
/t o/
.
.
.
/ch/

Figure 1 Basic architecture of a speech recognition system

Vocal tract filter ℎ[𝑛]
Excitation signal

𝑒[𝑛]
Speech

𝑥[𝑛] = 𝑒[𝑛] * ℎ[𝑛]

Figure 2 Source-Filter model of the speech signal.

Different techniques have been implemented in ASR systems to perform the aforemen-
tioned tasks. The processing steps of MFCC (Mel Frequency Cepstral Coefficient)
feature estimation are illustrated in Fig. 3. A brief description of each of them is
provided throughout the following sections.

2.1.1 Spectral shaping

Pre-emphasis
The spectrum of voiced sounds is characterized of a downward trend in which the fre-
quencies in the upper part of the spectrum are attenuated due to the combination of
the glottal source spectrum, and the radiation effect generated by the lips [4]. The
pre-emphasis filter is intended to boost the high frequency of the signal spectrum ap-
proximately 20 dB/decade so that the negative spectral envelope is offset.

Short-time segmentation
The speech signal contains short portions of stationary characteristics within individual
sounds. This means, over a short period of time, the statistics of the speech signal do not
differ significantly from sample to sample. Such characteristic gives room to short-time
based analysis [5]. The pre-emphased signal is then sliced up into short-time segments,
referred as frames. A length of 25 ms is typically used in the speech recognition field.
The frame shift is usually 10 ms. A phone is assumed to last at least 30 ms, which add
up to three frames [6].

Weighting
To avoid abrupt boundary discontinuities and spurious high-frequency components into
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2.1 Front-end: feature extraction

Analog speech signal

Pre-emphasis

Short-time segmentation and weighting

Short-time Fourier power spectrum

Critical band filtering (Mel scale)

Discrete Cosine transform

Cepstral processing and CMN

13 dimensional MFCC feature vector 𝑥𝑡 = [𝑐1, 𝑐2, ..., 𝑐13]

Spectral shaping

Spectral analysis

Parametric transformation

Figure 3 MFCC feature extraction technique, which generates a 13-dimensional feature vector
𝑥𝑡 for each frame.

the spectrum, each frame is then fed to a Hamming window. Today, in speech recogni-
tion, the Hamming window is almost exclusively used [7].

2.1.2 Spectral analysis

Short-time Fourier power spectrum
The standard discrete Fourier transform (DFT) is calculated for each weighted frame;
technique that is named short-time discrete Fourier transform (STFT). MFCC feature
extraction method relies on the spectrogram, which is the magnitude of the complex
values calculated by the STFT. The complex spectral values 𝑋𝑚[𝑘] of a weighted frame
and the power spectrum 𝐺𝑚[𝑘] are calculated using Eq. (3), where 𝑚 represents the
starting point for the localized DFT, 𝑘 the DFT index of the segment, and 𝑁 the length
of the analysis window.

𝑋𝑚[𝑘] =
𝑁−1∑︁
𝑛=0

𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒−𝑗 2𝜋
𝑁

𝑛𝑘

𝐺𝑚[𝑘] = |𝑋𝑚[𝑘]|2

𝑁
= 𝑅𝑒2(𝑋𝑚[𝑘]) + 𝐼𝑚2(𝑋𝑚[𝑘])

𝑁

(3)
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2 HMM Based ASR framework

Critical band filtering (Mel scale)
The Mel-filter bank is constructed by perceptional considerations: The human ear
distinguishes lower frequencies at a much finer scale than higher frequencies [8]. A mel
critical-band-like spectrum is obtained by integrating the multiplication between the
power spectrum obtained from Eq. (3) and the Mel overlapping triangular weighting
filters [9]. A dimensionality reduction is reached after this processing module. The set
of coefficients that represent the spectral magnitude is typically around 30 [6].

Log spectrum computation and inverse DFT
MFCCs are obtained by taking the inverse transform of the log Mel-scale filter bank
parameters. This transformation can be performed by the Discrete Cosine Transform
(DCT). The resulting vector from the DCT is truncated to retain only the low-order
coefficients so that an accurate representation of the slowly varying vocal tract is kept
[10]. Thus, it can be said that DCT calculates the deconvolution of the system presented
in Fig. 2. The resulting representation is generally composed by 13 coefficients per frame
(𝑐0, 𝑐1, . . . , 𝑐12). The zeroth coefficient 𝑐0 is the sum of the log energies from each filter
bank channel, considered also as a a geometric measure of frame energy.

2.1.3 Parametric transformations

Cepstral Mean Variance Normalization (CMVN)
Reducing the bias caused by time-invariant linear filtering is crucial to avoid a reduc-
tion in recognition task results [10]. CMVN is a feature-based noise compensation
algorithm that comprises the cepstral mean subtraction (CMS) and cepstral variance
normalization (CVN) methods. In a nutshell, CMS forces the average values of the
cepstral coefficients per-utterance to be zero, and CVN reduces the mismatches by nor-
malizing the second moment of the distribution of speech to a fixed value [11]. Both
CMS and CVN can reduce energy dispersion caused by loudness across speakers, but
cannot compensate energy variations within a single utterance. [12].

Dynamic features

1. Delta and acceleration: The cepstral coefficients described so far are referred
as static features since the dynamics of the spectral changes are not captured
[5]. Temporal dynamics features are employed to introduce context at the fea-
ture extraction level through derivatives [13]. The first order derivative, called
delta features (Δ), corresponds to the slope (or velocity). The second derivative,
called delta-delta features (ΔΔ), provides information about the curvature (or ac-
celeration). First and second-order dynamic features are usually appended to the
observation feature vector. The final vector, depending on what dynamic features
are added, could take one of the following structures

∙ 13 MFCC features (original)
∙ 26 MFCC features (original + first derivative)
∙ 39 MFCC features (original along with first and second derivative)

2. Linear transformations LDA, MLLT: Another approach to incorporate dy-
namics is to concatenate 9 to 13 neighboring feature vectors. This operation results
in a high dimensional vector, increasing the complexity of the system. To decrease

6



2.2 Back-end

the level of sophistication it is usual to perform a dimensionality reduction for all
data followed by a maximization procedure. Linear discriminant analysis (LDA)
and maximum likelihood linear transformation (MLLT) perform these two tasks,
respectively. In other words, the consecutive feature frames are spliced to 40 di-
mensions using LDA and then the orthogonal transformation MLLT is applied to
make the features more accurately modeled by diagonal covariance Gaussians [14].

2.2 Back-end

The back-end module performs the recognition task based on the input feature vectors.
It relies on the information provided from three knowledge sources that are the acoustic
model, the lexicon, and the language model.

2.2.1 Acoustic model

The acoustic model 𝑃 (𝑋|𝑊 ) represents the sound units of a language based on speech
features 𝑋 extracted by the front-end processing [2]. The acoustic model is usually
estimated by a Hidden Markov Model (HMM) [15], a kind of graphical model that
represents the joint probability of an observed and a hidden (or latent) variable. The
HMM is probably the most powerful statistical method for modeling speech signals
[16]. Since this type of modeling is the cornerstone of the multilingual recognition
system built in this thesis, an introduction of this framework is succinctly presented
below.

HMM-Based Acoustic model

The HMMs used to represent the acoustic speech model are left-to-right in accordance
with the Bakis model [9]. The state index of such model increases or remains unchanged
as the time increases, leading to a move from left to right on the Markov chain. This
translates to the model the causality of the speech production process. To mathe-
matically put the HHM framework in the recognition task context, the fundamental
question of statistical speech recognition (stated in Eq. (1)) can be analyzed as shown
in Eq. (4). The most likely word sequence ̂︁𝑊 presented before turns, in terms of this
working structure, to the most likely state sequence 𝑄*.

𝑄* = arg max
𝑄∈Q

𝑃 (𝑄, 𝑋)

= arg max
𝑄∈Q

𝑇∏︁
𝑡=1

𝑃 (𝑞𝑡|𝑞𝑡−1)⏟  ⏞  
transition score

𝑝(𝑥𝑡|𝑞𝑡)⏟  ⏞  
local emission score

(4)

where Q represents the set of all possible 𝑄 = {𝑞1, ..., 𝑞𝑡, ..., 𝑞𝑇 } HMM state sequences.
The right and left terms from Eq. (4) are technically referred as transition score or
transmition probability, and local emission score or emission probability respectively.
Fig. 4 shows an example of such HMM model with its own transition emission proba-
bilities. It also depicts the aforementioned concept of causality. The assumptions that
have to be made when using a HMM statistical framework are:

7



2 HMM Based ASR framework

state 1 state 2 state 3
p(qt = 2|qt−1 = 1) p(qt = 3|qt−1 = 2)

p(qt = 1|qt−1 = 1) p(qt = 2|qt−1 = 2) p(qt = 3|qt−1 = 3)

P (xt|qt = 1) P (xt|qt = 2) P (xt|qt = 3)

Figure 4 Example of three state and left-to-right HMM and its emission probability.

∙ Successive observations are assumed to be conditionally independent of past ob-
servations and states. This means that the probability that a particular acoustic
vector emitted at time 𝑡 depends only on the transition taken at that time, and it
is conditionally independent of the past.

∙ The state chain is assumed to be first-order Markov. This means that the probabil-
ity of being in a given state at time 𝑡 only depends on on the state at time 𝑡−1 [17].

Gaussian mixture model (GMM) is popularly used to model the emission probability
𝑝(𝑥𝑡|𝑞𝑡) in a HMM-based automatic speech recognition system [18]. The Gaussian
distribution is completely determined by two parameters, the mean 𝜇 and the covariance
matrix

∑︀
. GMM approach, which is derived from a mixture of a finite Guassian

distributions, is preferred to a single Gaussian distribution since it allows a irregular
distribution modeling.

Unit and sequence modeling

HMM can represent different speech elements that can hierarchically be structured into
phonemes, words, and sentences. A well structure model is primary since allows the
system to potentially recognize an unlimited set of words, and directly impacts the
extent of data sharing between acoustic models. Standardly, unit models represent
phones or subphones (i.e. the beginning (B), middle (M), or end (E) part of phones)
[6]. This is shown in Fig. 5. The implementation of this model adds acoustic context to
the acoustic model. Depending on the context two subword units can be distinguished
as follows

∙ Context-independent subword unit The acoustic unit set is defined based on
the pronunciation lexicon. The number of acoustic units is 𝐷 = 𝐾 × 𝑀 , where 𝐾
is the number of context-independent (CI) subword units in the lexicon and 𝑀 is
the number of HMM states for each context-independent subword unit, typically
𝑀 = 3 as shown inFig. 5. In CI subword unit based ASR systems, the determinis-
tic relationship between lexical and acoustic units is knowledge driven. Therefore,
lexical model training is not involved, and the deterministic map between lexical
and acoustic units is the lexical model [19].
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2.2 Back-end

I B M E B M E B M E B M E E

/s/ /ih/ /k/ /s/
”six”

Figure 5 Representation of word "six" when the representation of beginning (B), middle (M),
or end (E) is phone per phone

∙ Context-dependent sub-word unit based ASR systems The physical ar-
ticulators that produce sound cannot make rapid or large movements, thus they
begin to move towards their target positions for the next phone while producing
the current phone. Neighbouring articulator trajectories therefore overlap, affect-
ing the acoustic realization of the current phone. In terms of ASR unit modeling
this effect, called co-articulation, is considered using acoustic context-dependent
(CD) subword units [8]. The number of CD acoustic units is 𝐼 = 𝑀.𝐾𝑐𝑟+𝑐𝑙+1

where 𝑐𝑙 is the preceding context length, and 𝑐𝑟 is the following context length. A
typical CI model used is the triphone unit. This model has a distinct HMM for
every unique pair of left and right.

Context dependent models are simple to build. The basic method starts with
a set of single mixture monophone HMMs. These are cloned to form triphones
and Baum-Welch re-estimation is used to train the triphone set. The number of
mixture components in the triphones is gradually increased as in the monophone
build case [8].

Acoustic model transfomation: Speaker adaptive training

The Speaker adaptive training (SAT) technique is used to reduce variation due to
speaker, channel, or acoustic conditions. In few words, when SAT is applied the acous-
tic models are trained on speaker-normalized features.Then the inverse of the feature
space maximum likelihood linear regression (fMLLR) matrix is used to remove the
speaker identity from the original features [20]. The fMLLR transformation is an affine
transformation of the features in the final 60-dimension recognition feature space that
maximizes the likelihood of a speaker’s data under an acoustic model [21]. In con-
trast to CMN where each feature vector component is processed separately, fMLLR
makes use of a full transformation matrix that can be applied to the feature vector as
a whole.

2.2.2 Lexicon

A lexicon or dictionary expresses the pronunciation of words in function of phones,
the basic sounds in a language. Its role in the recognition task can be seen as a map
from phoneme sequences to words. For optimal performance, the lexicon should list all

9



2 HMM Based ASR framework

allowed or expected pronunciations of a word to be recognized. An example of a lexicon
entry is presented in Fig. 6.

Speech S P IY CH

Sprache S P R AL X ETU

Figure 6 A lexicon example. Phones are indicated by the symbols inside the ellipses.

Stochastic finite state automata (SFSA) are widely used to represent lexical and lan-
guage models. In SFSA the set of legal word sequences is represented as a finite state
network whose edges stand for the spoken words, i.e., each path through the network re-
sults in a legal word sequence [22]. The constituents of such representation are covered
in Sec. 2.2.5.

Unknown words
Out-of-vocabulary (OOV) words are unknown words that appear in the recognition task
but not in the training vocabulary. A closed-vocabulary-based system can recognize
only the words defined by the lexicon, and there will be no unknown words. An open
dictionary, on the other hand, means that the system is able to model the unknown
words by adding a pseudo-word usually called <UNK>.

2.2.3 Language model

The language model provides the apriori probability 𝑃 (𝑊 ) of a hypothesized word
sequence independently of the acoustics. To include this information helps the speech
recognizer to find the most likely word sequence when different sequences have the
same acoustic likelihood 𝑃 (𝑋|𝑊 ), and reduces the search options during the decoding
stage. A language model is specific to the corresponding language and independent
from the character morphology modeled by HMMs [23]. Let the word sequence be
𝑊 = (𝑤1, 𝑤2, . . ., 𝑤𝑅), the prior probability P(W) is given by

𝑃 (𝑊 ) = 𝑃 (𝑤1, 𝑤2, . . ., 𝑤𝑅)
= 𝑃 (𝑤𝑅|𝑤1, 𝑤2, . . ., 𝑤𝑅−1)

=
𝑅∏︁

𝑘=1
𝑃 (𝑤𝑘|𝑤1, . . ., 𝑤𝑘−1)

(5)

Unigram, bigram and trigram
The N-gram language model estimates the probability 𝑃 (𝑊 ) by truncating the pre-
ceding word to 𝑁 − 1. It can be estimated using the counts of the words from large
training corpora. The maximum likelihood estimation is given then as follows

𝑃 (𝑤1
𝑘) ≈

𝑅∏︁
𝑘=1

𝑃 (𝑤𝑘|𝑤𝑘−𝑁+1, 𝑤𝑘−𝑁+2, . . ., 𝑤𝑘−1) (6)

10



2.2 Back-end

Bigram alludes to pairs of adjacent tokens in a corpus. It can be defined in terms of
any kind of linguistic unit, but are usually taken to be words. Bigram can be estimated
when 𝑁 = 2 in Eq. 6. Unlike bigram, unigram (when 𝑁 = 1) and trigram (when
𝑁 = 3) are defined as a single word and a sequence of three words, respectively. The
number of subsequent tokens is determine by the n-gram used.

Back-off method
The Back-off method is used to prevent the language model to assign a probability
0 to unseen n-grams in the recognition phase that were not seen during the training.
In short, this smoothing method artificially increase the number of all n-grams by 1,
whether they occurred in the training corpus or not. By this all probabilities turn to
be greater than 0 [24].

2.2.4 Decoder

The general assumption of the speech decoder is that the message carried in the speech
signal is encoded as a sequence of symbols. Therefore, the task of the statistical decoder
is to map the sequence of incoming feature vectors from the front-end module (Sec. 2.1)
to the corresponding sequence of symbols. Mathematically speaking, the decoder target
is to calculate the arg maxW∈𝑊 . The statistical decoder has to cope with two problems
that stems from the fixed rate that is used in the feature extraction stage. These are:

∙ Several speech signals with different lengths may carry the same message. As a
consequence, there is no one-to-one mapping between the feature vectors and the
sequence of symbols.

∙ A variety of feature vectors could yield to the same symbol. Given that the feature
vectors are considered as samples of a stochastic process, the statistical decoder
has to be able to characterize the common patterns of all feature vectors corre-
sponding to a particular symbol.

A standard strategy applied in the recognition pocess is based on a beam Viberbi
search. Initially, all possible words are added to the search beam. At each possible word
boundary, the language model predicts the most likely subsequent word(s), which are
then expanded to the respective model sequences, and added to the search space. The
search beam is pruned to keep only a little number of promising word sequences

2.2.5 Speech recognition using WFST

Weighted Finite State Transducers (WFST) offer a way to integrate phonetic modeling,
lexicon and language model based on weighted acceptors and transducers.

Transducer composition

𝑅 = 𝐻 ∘ 𝐶 ∘ 𝐿 ∘ 𝐺
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2 HMM Based ASR framework

∙ First layer - Grammar (G): Models the possible word sequences to be recognized
based on the language model. It is an acceptor, i.e, its input and output symbols
are the same.

∙ Second layer - Lexicon (L): Takes phoneme symbols as input and produces words
as output.

∙ Third layer - Context dependency (C): Models a transducer whose output is a
sequence of phoneme symbols depending on the left and right phonetic context.

∙ Fourth layer - HMM (H): Models the actual HMM. It uses an emission distribution
(or state) ID as input, which is used by the decoder to compute the actual emission
probability, and outputs context-dependent phones.

Training and decoding

Both training and decoding are based on the path within the compound WFST R that
represents the state sequence of the underlying HMMs. Viterbi algorithm can be imple-
mented straight forward only for small WFST since an unacceptably high large WFST
results when longer utterances and pronunciation alternatives are considered. Therefore
a modification of Viterbi algorithm, the time-synchronous Viterbi beam search, which
is based on considering only a certain number of best paths, referred as the beam, is
implemented. The pruning step is either implemented by considering a fixed number
of paths, or by allowing paths that are within a certain likelihood range of the current
best path.

12



3 ASR for multiple languages

A system that is designed to recognize one particular language at a time is denoted as
monolingual system. Such system is trained solely using data from the target language
to recognize. This kind of system was introduced in Sec 2. A multilingual system, in
contrast to a monolingual, is capable to recognize several languages. In the following
sections it is described the architecture of a multilingual ASR system and the resulting
challenges for speech recognition. It is also discussed an efficient way deal with the
enormous task of covering a small percentage of the word’s languages by building speech
recognition systems for multiple languages through model combination.

3.1 Multilingual ASR systems

Integrating several monolingual recognizers with a front-end for language identification
is a very basic approach to identify multiple languages. Ideally, this concept could
accomplish the required task; however, storage requirements set a limit on this ap-
proximation. Combining different parameters yields to the concept of a multilingual
engine, thereby several different languages could be identify while saving storage space.
The concept of sharing is shown in the Fig. 7. Knowledge sharing can happen on
three levels: the acoustic model, the pronunciation dictionary, and the language model.
Fig. 7 presents the architecture when the acoustic model is the shared parameter in la
multilingual system.

EN

PO

GE

SP

MFCC 
+ Δ 

+ ΔΔ 
Decoder

EN

PO

GE

SP

LM

Input

TEXT

EN

PO

GE

SP
ML

AM

EN

PO

GE

SP
ML

Lexicon

Figure 7 Multilingual ASR system

13



3 ASR for multiple languages

3.1.1 Lack of resources

Per language, about 10, 000 utterances, or 100, 000 words spoken by 100 different speak-
ers, are said to be the minimal amount to guarantee a relatively robust LVCSR system
[2]. Such large amount of required data explains why ASR technology has success-
fully been introduced in commercial system for resource-rich languages, e.g. English,
Chinese, French; where there are adequate resources [25]. However, there are some lan-
guages denoted as under-resource languages where required resources to build a ASR
system are not available. The term lack can be extended to at least one of the follow-
ing: unique writing system, stable orthography, linguistic expertise, transcribed speech
data, pronunciation dictionaries, vocabulary lists, electronic text resources, etc.

The lack of such data is one of the major challenges in the development process of
speech recognizers that has also driven to the idea of sharing models between different
languages. When the acoustic model is the target resource to share, the quantity and
quality of the speech and text databases have to be balanced across languages. For an
ideal multilingual acoustic model, balance alludes to

∙ Amount of text and audio data across languages.
∙ The audio data should cover a reasonable number of speakers with a representative

distribution in demographics, such as gender, age, place of origin, and education.
∙ Audio material should fulfill some conditions to ensure quality material. Some of

them are noise, microphone, soundcard.
∙ The amount of text data should allow reliable estimates for language modeling or

grammar development.

3.1.2 Acoustic model combination

The acoustic model combination approach is based on the fact that the sounds pro-
duced across languages share a common acoustic space [25]. The usual mechanism
to implement a combined acoustic model consists of defining a lexical unit set based
on universal phones using either knowledge-based or data-driven approaches. Once
the universal phone set is defined, the relationship between lexical units and acoustic
feature observations is learned on language-independent data.

3.2 Language resources: Corpora and lexica

The benefits of the definition of a unified multilingual phoneme set become more and
more convenient as the number of languages to cover grows. This is because the more
languages covered, the more phonetic similarities across languages can be exploited [26].
The first step towards the design of the multilingual speech recognition presented in this
work was then the identification of the different phonetic representations incorporated
by the databases used. Afterwards, once the similarities across them where identified,
the definition of a unified phoneme inventory that could equally work for all languages
was defined.
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3.2 Language resources: Corpora and lexica

3.2.1 TIMIT corpus

The TIMIT speech database is a acoustic-phonetic continuous speech corpus of Amer-
ican English. The speech material was exclusively collected from native speakers and
it covers the major 8 dialects of the United States. TIMIT is intended to provide
acoustic data and phonetic information for the evaluation and improvement of ASR
systems. This corpus was created by Massachusetts Institute of Technology (MIT),
Stanford Research Institute (SRI), and Texas Instruments (TI), and was sponsored by
the Defense Advanced Research Projects Agency - Information Science and Technology
Office (DARPA - ISTO). The phonetic alphabet used of the TIMIT corpus is sometimes
called TIMITBET and is composed by 61 different symbols.

3.2.2 Wall Street Journal corpus

The DARPA Wall Street Journal corpus (WSJ) is a general-purpose English, large
vocabulary, natural language, high perplexity corpus containing significant quantities of
both speech data (400 hrs) and text data (47M words) [27]. Text materials were selected
to provide training and test for 5k and 20k words. This corpus was sponsored by the
Advance Research Projects Agency (ARPA) and Linguistic Data Consortium (LDC),
and carried out by MIT, TI and Standford Research Institute (SRI) International.
WSJ was collected in two phases, namely CSR-WSJ0 and CSR-WSJ1. These two
phases, which differ from the year of data collection, determine how the proposed
training, development and evaluation sets are predefined. The different noises that can
be encounter in WSJ are made by cars, restaurants, streets, airport, and train. No
phonetic lexicon was designed to be used exclusively by this database. Instead, the
CMU-Arctic phoneset which is also known as CMUBET together with the Carnegie
Mellon University (CMUdict) dictionary are used.

3.2.3 GlobalPhone database

GlobalPhone (GP) is, up to date, a 22 languages high-quality read speech and text
database designed to be uniform across languages in terms of the amount of text and
audio per language [2]. The aim of GP corpus is to provide transcribed speech data
for the development and evaluation of LVCSR systems. Languages such as German,
Portuguese and Spanish can be found among the languages covered by GP. The data
acquisition was performed where the language is officially spoken. German was collected
in Karlsruhe, Germany; Brazilian Portuguese in Porto Velho and São Paulo, Brazil; and
Spanish in Heredia and San José, Costa Rica [28]. The read texts were selected from
national newspaper articles from the 1995 to 1998 international political and economic
news. The transcriptions are available in the original orthographic script, but addition-
ally mapped into a romanized form. The romanized version of all transcripts is encoded
in ASCII-7. The original orthographic scripts for German, Spanish and Portuguese is
ISO-8859-2. The phonetic representation of each language the GP covers changes from
one language to another. Therefore, the size of the phone inventory, as well as the used
symbols are dependent of the language. The phone set of German, Portuguese and
Spanish are composed of 41, 45, and 40 different symbols respectively.
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3 ASR for multiple languages

3.3 Phonetic alphabets

Typically, ASR systems use linguistically motivated phones or phonemes as subword
units. Therefore, different phone sets have been designed to cover the set of sounds in all
languages. Examples of phone sets include the TIMITBET and CMUBET previously
mentioned when the TIMIT and WSJ corpora were introduced. Because the target of
this work is to build a multilingual system whose acoustic model can be shared across
the implemented languages, a unified phone representation must be defined because
of the variety of phone alphabets found in the used language resources. As stated in
Sec. 3.1.2, the combination of different acoustic models requires a language-independent
phone set definition.

3.3.1 The international phonetic alphabet

The International Phonetic Alphabet (IPA) is an internationally used notational system
for transcribing at phonetic level. It is based on the Roman alphabet, but also includes
letters and additional symbols from other sources in order to cover the wide variety of
sounds found in the languages of the world. Consonants and vowels are separated in
the IPA chart for articulatory reasons. Vowels are organised into a chart referred as the
vowel quadrant or vowel space. This chart is intended to roughly represent the physical
space inside ones mouth. The left of the chart represents the mouth portion closer to
the lips, and the right side is the back of the mouth. The top of the chart is the roof of
the mouth and the bottom of the chart is the jaw.

The topmost table represent the basic consonants. Each column represents where in the
vocal tract the constriction takes place, and each row represents how much constriction
there is. Consonants come in pairs on the chart, and these pairs are based on vocal fold
vibration [29].

Machine-readable extension: SAMPA and X-SAMPA

The necessity of writing the phonetic transcription encoded in such way that could
be machine-readable led, in the late 1980s, to the development of the SAMPA. A 7-
bit printable ASCII characters to represent the transcriptions of the IPA comprises
SAMPA alphabet. The underlying principle of SAMPA was to select those IPA sym-
bols which were conventionally used to represent phonemes in the major languages of
the European Union. Since then IPA has been revised several times; consequently,
extensions of SAMPA had to be implemented. The Extended SAMPA Phonetic Alpha-
bet (X-SAMPA) then emerges to encompass the complete set of IPA conventions. A
complete list of these two alphabets can be found in [30]. The mapping from IPA to
either SAMPA or X-SAMPA is isomorphic so that a one-to-one transformation in both
directions can be carried out.

3.3.2 Alphabet for English

ARPABET

ARPAbet is an American English phonetic transcription code developed by ARPA as
part of their Speech Understanding Project [31]. It uses ASCII symbols. There are
two representations in ARPABET: one adopts only one character and includes lower-
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3.3 Phonetic alphabets

  

 

CONSONANTS (PULMONIC) © 2015 IPA
 Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive                       
Nasal                       
Trill                       
Tap or Flap                       
Fricative                       
Lateral 
fricative                       
Approximant                       
Lateral 
approximant                       

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible. 

CONSONANTS (NON-PULMONIC) 
Clicks Voiced implosives Ejectives

 Bilabial  Bilabial  Examples: 

 Dental  Dental/alveolar  Bilabial 

 (Post)alveolar  Palatal  Dental/alveolar 

 Palatoalveolar  Velar  Velar 

 Alveolar lateral  Uvular  Alveolar fricative 
 

VOWELS 
Front Central  Back

Close      
     

Close-mid     
     

Open-mid    
     

Open     
Where symbols appear in pairs, the one 
to the right represents a rounded vowel. 

OTHER SYMBOLS 
 Voiceless labial-velar fricative   Alveolo-palatal fricatives 
 Voiced labial-velar approximant   Voiced alveolar lateral flap 
 Voiced labial-palatal approximant   Simultaneous and 

 Voiceless epiglottal fricative Affricates and double articulations 
can be represented by two symbols 
joined by a tie bar if necessary. 

 Voiced epiglottal fricative 
 Epiglottal plosive 

 

 

SUPRASEGMENTALS 
 Primary stress 
 Secondary stress 
 Long  

 Half-long  

 Extra-short  

 Minor (foot) group 

 Major (intonation) group 

 Syllable break  

 Linking (absence of a break) 
 

DIACRITICS Some diacritics may be placed above a symbol with a descender, e.g. 
 Voiceless    Breathy voiced    Dental  

 Voiced    Creaky voiced    Apical  

 Aspirated    Linguolabial    Laminal  

 More rounded    Labialized    Nasalized  

 Less rounded    Palatalized    Nasal release  

 Advanced    Velarized    Lateral release  

 Retracted    Pharyngealized    No audible release 

 Centralized    Velarized or pharyngealized  

 Mid-centralized    Raised  ( = voiced alveolar fricative) 

 Syllabic    Lowered  ( = voiced bilabial approximant) 

 Non-syllabic    Advanced Tongue Root  

 Rhoticity    Retracted Tongue Root  
 

TONES AND WORD ACCENTS 
LEVEL   CONTOUR
or Extra  or Risinghigh 
  High Falling
  Mid High

rising
  Low Low

rising
  Extra Rising-

low falling
Downstep  Global rise 
Upstep  Global fall 

 

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015) 

Typefaces: Doulos SIL (metatext); Doulos SIL, IPA Kiel, IPA LS Uni (symbols) 
 

 

Figure 8 The international phonetic alphabet, 2015
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3 ASR for multiple languages

num IPA Comp. repr. num IPA Comp. repr.
1-Char 2-Chars 1-Char 2-Chars

1 i i IY 25 p p P
2 I I IH 26 t t T
3 eI e EY 27 k k K
4 E E EH 28 b b B
5 æ @ AE 29 d d D
6 A a AA 30 g g G
7 2 A AH 31 h h HH
8 O c AO 32 f f F
9 oU o OW 33 T T TH
10 U U UH 34 s s S
11 u u UW 35 S S SH
12 @ x AX 36 v v V
13 1 X IX 37 D D DH
14 3~ R ER 38 z Z Z
15 aU W AW 39 Z Z ZH
16 aI Y AY 40 tS C CH
17 OI O OY 41 dZ J JH
19 w w W 42 l

"
L EL

20 r r R 43 m
"

M EM
21 l l L 44 n

"
N EN

22 m m M 45 R F DX
23 n n N
24 R̃ G NX

Table 1 ARPAbet phoneme list and the X-SAMPA corresponding representation

case letters, while the second uses only upper-case letters. The two versions of the
ARPAbet are given in Table 1. Different lexica are derived from this phonetic code,
e.g., CMUBET and TIMITBET.

TIMITBET

The TIMIT phonetic representation, as mentioned before, is based on ARPABET pho-
netic alphabet. TIMIBET includes additional symbols to describe the enclosure and
release parts of plosive sounds [32]. Because the target of this step is to define a pho-
netic alphabet that matches across all implemented languages, some modifications had
to me make. Table 2 presents the resolved relationship between the TIMITBET and
X-SAMPA conversion used in this work experiments. It can be seen that some char-
acters, the ones followed by a superscript, were differently mapped of how they should
conventionally be converted from the TIMITBET to X-SAMPA. The major motivation
of such changes were imposed by CMUBET. The standardize mapping can be found in
the footnotes.

1/em/ → m=
2/en/ → n=
3/ah/ → V
4/axr/ → @’
5/ix/ → 1
6/el/ → l=
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3.3 Phonetic alphabets

num TIMITBET IPA X-SAMPA num TIMITBET IPA X-SAMPA
1 aa A A 24 em m

"
m1

2 ae æ { 25 en n
"

n2

3 ah 2 @ 3 26 f f f
4 ao O O 27 g g g
5 aw aU aU 28 hh h h
6 ax @ @ 29 jh dZ dZ
7 axr @~ 3‘4 30 k k k
8 ay aI aI 31 l l l
9 eh E E 32 m m m
10 er 3~ 3‘ 33 n n n
11 ey eI eI 34 ng N N
12 ih I I 35 p p p
13 ix 1 I 5 36 r r r
14 iy i i 37 s s s
15 ow oU oU 38 sh S S
16 oy OI OI 39 t t t
17 uh U U 40 th T T
18 uw u u 41 v v v
19 b b b 42 w w w
20 ch tS tS 43 y j j
21 d d d 44 z z z
22 dh D D 45 zh Z Z
23 el l

"
l6

Table 2 Mapping used from the TIMIT phoneme list to X-SAMPA

CMUBET

This CMUBET alphabet is also based on the ARPABET American English phonetic
transcription. CMUBET do not specify additional symbols in its inventory as TIMIT.
Instead, it include less phones that the standardize phone inventory defined by ARPA-
BET . The difference between TIMIT and CMUBET, as well as the need of unifying the
phone representation between these two dictionaries led to implementing some modifi-
cations. The one-to-one mapping from CMUBET to X-SAMPA is presented in Table 4.
Taking the word "beautiful" illustrates the transcription encountered mismatch between
TIMIT and CMUDICT lexica.

CMUDICT TIMITBET
Lexica transcription B Y UW1 T AH0 F AH0 L b y uw1 t ih f el
X-SAMPA standard conversion b j u t V f V l b j y t I f I l=

3.3.3 Alphabet for German
The conversion from the GlobalPhone phonetic representation to X-SAMPA was based
on the documentation provided by the database. The definition of each phonetic symbol
used in GP transcription is presented in term of the IPA phonetic alphabet [33]. The
41 phone set implemented by GP covers 46035 dictionary entries. Table 4 presents the
definition of the defined X-SAMPA representation for German.
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3 ASR for multiple languages

num CMUBET IPA XSAMPA num CMUBET IPA X-SAMPA
1 aa A A 21 g g g
2 ae æ { 22 hh h h
3 ah 2 @7 23 jh dZ dZ
4 ao O O 24 k k k
5 aw aU aU 25 l l l
6 ay aI aI 26 m m m
7 eh E E 27 n n n
8 er 3~ 3‘ 28 ng N N
9 ey eI eI 29 p p p
10 ih I I 30 r r r
11 iy i i 31 s s s
12 ow oU oU 32 sh S S
13 oy oI oI 33 t t t
14 uh U U 34 th T T
15 uw u u Z v v v
16 b b b 36 w w w
17 ch tS tS 37 y j j
18 d d d 38 z z z
19 dh D D 39 zh Z Z
20 f f f

Table 3 Mapping used from the CMUDICT phoneme list to X-SAMPA

3.3.4 Alphabet for Portuguese

The X-SAMPA definition for Portuguese was unclear at the beginning because the
ambiguity found in the GP specifications. According to the documentation certain
vowels can be mapped to the different IPA symbols. This problem is clear depicted in
Fig. 9. It can be observed, in the case of /E/ GP phonetic unit, that such symbol could
be mapped as either /e/, /@/ or /E/. The same inconvenient can be also observed for
/O/ since it can be mapped as /o/ or /O/. It was finally decided to make use of the X-
SAMPA phonetic symbols for /e/ and /o/ IPA representation. The total 45 phone set
is used by GP to cover 58878 dictionary entries. Table. 5 shows the complete mapping
of the GP phonetic alphabet to X-SAMPA.

3.3.5 Alphabet for Spanish

The Spanish language uses a phonetic alphabet composed by 40 phones. Because
Spanish has a straightforward grapheme-to-phoneme relationship, the phonetic repre-
sentation presented by GP was automatically created by a set of grapheme-to-phoneme
mapping rules [35]. The GP phoneme alphabet for Spanish covers 33960 words occur-
ring in the transcription. Table. 6 presents the conversion implemented in the developed
multilingual system.

3.3.6 Sharing phones

Table. 7 and 8 present a review of the achieved representation after joining the pronun-
ciation of English, German, Portuguese and Spanish. In one hand, It can be noticed

7/ah/ → V
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3.4 Language models

num GP Dict. IPA XSAMPA num GP Dict. IPA X-SAMPA
1 a a a 22 C ç C
2 ae 3 E 23 d d d
3 atu 5 6 24 g g g
4 e e e 25 f f f
5 etu @ @ 26 h h h
6 i i i 27 j j j
7 o o o 28 k k k
8 oe œ 9 29 l l l
9 u u u 30 m m m
10 ue y y 31 n n n
11 aI aI aI 32 ng N N
12 aU aU aU 33 p p p
13 eU OY OY 34 r r r
14 al a: a: 35 s s s
15 el e: e: 36 S S S
16 il i: i: 37 t t t
17 oel ø: 2: 38 ts ts ts
18 ol o: o: 39 v v v
19 uel y: y: 40 x x x
20 ul u: u: 41 z z z
21 b b b

Table 4 Mapping used from the GP-German phoneme list to X-SAMPA

Figure 9 Definition of vowel representation defined by GP for Portuguese. Taken from [34]

that most of the consonants across these four languages are shared. On the other hand,
vowels significantly vary from one to another language. Therefore, It can be said then
that the multilingual system is more likely to accurately recognize consonants since the
amount acoustic training material of such phones is higher than the material of vowels.
Additionally, a general review is also presented in Tables 9 and 10

3.4 Language models
An N-gram language model, presented in Sec. 2.2.3 represents a probability distribu-
tion over words 𝑤, conditioned on (𝑁 − 1)-tuples of preceding words or histories h.
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3 ASR for multiple languages

num GP Dict. IPA XSAMPA num GP Dict. IPA X-SAMPA
1 a a a 21 w V P
2 a+ a’ a" 22 t t t
3 e e e 23 d d d
4 e+ e’ e" 24 n n n
5 i i i 25 r r r
6 i+ i’ i" 26 rf R 4
7 o o o 27 T T T
8 o+ o’ o" 28 D D D
9 u u u 29 s s s
10 u+ u’ u" 30 z z z
11 ai ai ai 31 l l l
12 au au au 32 n∼ ñ J
13 ei ei ei 33 j j j
14 eu eu eu 34 L L L
15 oi oi oi 35 k k k
16 p p p 36 g g g
17 b b b 37 x x x
18 m m m 38 G G G
19 V B B 39 ng ð N\
20 f f f 40 tS tS tS

Table 5 Mapping used from the GP-Portuguese phoneme list to X-SAMPA

num GP. IPA XSAMPA num GP. IPA X-SAMPA
1 a a a 21 w V P
2 a+ a’ a" 22 t t t
3 e e e 23 d d d
4 e+ e’ e" 24 n n n
5 i i i 25 r r r
6 i+ i’ i" 26 rf R 4
7 o o o 27 T T T
8 o+ o’ o" 28 D D D
9 u u u 29 s s s
10 u+ u’ u" 30 z z z
11 ai ai ai 31 l l l
12 au au au 32 n∼ ñ J
13 ei ei ei 33 j j j
14 eu eu eu 34 L L L
15 oi oi oi 35 k k k
16 p p p 36 g g g
17 b b b 37 x x x
18 m m m 38 G G G
19 V B B 39 ng ð N\
20 f f f 40 tS tS tS

Table 6 Mapping used from the GP-Spanish phoneme list to X-SAMPA
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3.4 Language models

Vowels
num IPA X-SAMPA Languages num IPA X-SAMPA Languages

1 A A EN 26 o o GE, PO, SP
2 2 @ EN, GE 27 o: o: GE
3 ø: 2: GE 28 o’ o" PO, SP
4 5 6 GE, PO 29 õ o∼ PO
5 a a GE, PO, SP 30 õ’ o"∼ PO
6 a: a: GE 31 U U EN, PO
7 a’ a" PO, SP 32 u u EN, GE, PO, SP
8 ã a∼ PO 33 u: u: GE
9 ã’ a"∼ PO 34 u’ u" PO, SP
10 E E EN, GE 35 ũ u∼ PO
11 3~ 3‘ EN 36 ũ’ u"∼ PO
12 e e GE, PO, SP 37 æ { EN
13 e: e: GE 38 aI aI EN, GE
14 e’ e" PO, SP 39 ai ai SP
15 ẽ e∼ PO 40 aU aU EN, GE
16 ẽ’ e"∼ PO 41 au au SP
17 I I EN, PO 42 eI eI EN
18 i i EN, GE, PO, SP 43 ei ei SP
19 i: i: GE 44 eu eu SP
20 i’ i" PO, SP 45 OY OY GE
21 ĩ i∼ PO 46 œ 9 GE
22 ĩ’ i"∼ PO 47 R 4 SP
23 y y GE 48 oi oi SP
24 y: y: GE 49 oU oU EN
25 O O EN

Table 7 Shared vowels after the implemented conversion

Consonants
num IPA X-SAMPA Languages num IPA X-SAMPA Languages

1 B B SP 20 N N EN, GE
2 b b EN, GE, PO, SP 21 V P SP
3 ç C GE 22 p p EN, GE, PO, SP
4 D D EN, SP 23 K R PO
5 d d EN, GE, PO, SP 24 r r EN, GE, PO, SP
6 dj d’ PO 25 S S EN, GE, PO
7 dZ dZ EN 26 s s EN, GE, PO, SP
8 f f EN, GE, PO, SP 27 T T EN, SP
9 G G SP 28 t t EN, GE, PO, SP
10 g g EN, GE, PO, SP 29 tj t’ PO
11 h h EN, GE 30 tS tS EN,SP
12 ñ J PO, SP 31 ts ts GE
13 j j EN, GE, SP 32 v v EN, GE, PO
14 k k EN, GE, PO, SP 33 w w EN
15 L L PO, SP 34 x x GE, SP
16 l l EN, GE, PO, SP 35 Z Z EN
17 m m EN, GE, PO, SP 36 z z EN, GE, PO, SP
18 ð N\ SP 27 R 4 SP
19 n n EN, GE, PO, SP

Table 8 Shared vowels after the implemented conversion
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3 ASR for multiple languages

Languages Num. of phones Shared phones Unique phones
EN 39 29 10
GE 41 29 12
PO 43 30 13
SP 40 30 10

Table 9 Overview of the total shared phones after the X-SAMPA conversion.

Languages Num. of phones Shared phones Unique phones
Vowels

EN 15 8 7
GE 20 10 10
PO 23 13 10
SP 15 10 5

Consonants
EN 24 21 3
GE 21 19 2
PO 20 17 3
SP 25 20 5

Table 10 Review of the shared phones for vowels and consonants

Because such probabilities indirectly encode the relevant aspects of a language, e.g. the
syntax, grammar rules, etc.; LMs have to be independently defined per language. The
multilingual system developed in this work covers four languages; consequently, it was
necessary to count with at least four different language models that describe each of
them separately. The language model used for English was included in the WSJ cor-
pus and was developed by the MIT Lincoln Laboratory; whereas the language models
corresponding to the GP languages were obtained from the Internet. These are public
distributed and can be found at [36]. Despite they all were obtained from different re-
sources, they were stored in the same text file, namely ARPA-MIT format. It is widely
used because most of the language model toolkits support this format.

Wall Street Journal WSJ offers a variety of meaningful statistical language models
distributions depending on the WSJ development phase, this refers to the WSJ0 and
WSJ1 distributions. Some difference between them reside in the vocabulary cover-
age, n-gram order, insertion of verbalized punctuation pronunciation, etc. The chosen
language model in this work corresponds to the WSJ1 distribution, open vocabulary
back-off trigram model. More details concerning the selected language model are shown
in Table 11

Globalphone The language models of GP data base were built by RLAT. This is a
web-based interface which aims to reduce the human effort involved in building speech
processing systems for new languages [37]. One website per language was chosen to
collect text data; the removal of HTML tags, code fragments, and empty lines were re-
move and then used to create the language models. The process consisted in gathering
information on a daily basis and building different LMs using the daily crawled data.
The final language models are a result by a linear interpolation of all daily built lan-
guage models. The weights were computed by using SRI language toolkit. A detailed
description of the most relevant specifications per language model used can be found
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3.4 Language models

Lang 3gram 3gram-prune PPL OOV (%) Vocab
EN 3153527 709089 109 1.5 20k
GE 990676 116824 672 0.3 38k
PO 2625824 347190 58 9.9 62k
SP 15986 12037 154 0.1 19k

Table 11 Language model specifications.

in Table 11
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4 Experimental part

4.1 Language resources
Different corpora were used to build the multilingual system presented in this chapter.
Globalphone and WSJ are the two data bases the system is made up with. Globalphone
contributes with German (GE), Spanish (SP) and Portuguese (PO) languages; while
WSJ with English (EN) language data. In Sec. 3.3 it was described the phonetic
alphabet each of these corpora implement by default and what conversion was resolved
to unified the phonetic representation. This section is addressed to describe the different
sets for the training and evaluation tasks.

Wall Street Journal The WSJ training and test set are recorded with a close and a
far talking microphone. Speech recorded by the far-talking microphone is mainly used
to research the effect of changing channel characteristics which is not the focus of this
thesis. Hence, the only speech data used is the close talking microphone. Such audio
files are identified by the .wv1 extension. The training, evaluation and development set
structures proposed by the original WSJ recipe can be found in Table 12 and 13

WSJ0 WSJ1 WSJ0+WSJ1
Speakers 84 200 284
Sentences 7240 30276 37516

Words 132472 511527 643999

Table 12 WSJ data structure.

Development data Evaluation data
Dev92 Dev93 Nov92 Nov83

Corpus 5k 20k 5k 20k 5k 20k 5k 20k
Speakers 10 10 10 10 8 8 10 10
Senteces 410 403 513 503 330 333 215 213
Words 6780 6742 8639 8235 5353 5643 3854 3448

Table 13 WSJ training corpus

GlobalPhone GlobalPhone training, development, and evaluation sets are split up at
an 80 : 10 : 10 ratio in such a way that no speaker appears in more than one group
and no article is read by two speakers from different groups. Table 14 shows the data
distribution of each set for German, Portuguese and Spanish according to the original
recipe.

Merge of databases To have approximately the same contribution per language was
the design parameter that determined the size of each set to implement in the multilin-
gual system. On the basis of this requirement, a redefinition of the training, evaluation
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4.2 Evaluation metric

Lang Training Evaluation Development

Speakers

GE 65 6 6
PO 86 7 8
SP 82 8 10

Total 233 21 24

Utterances

GE 8185 826 1073
PO 8928 694 648
SP 5425 564 677

Total 22538 2084 2398

Words

GE 115617 11959 15387
PO 177779 15540 13030
SP 138033 14426 19098

Total 431429 41925 47515

Table 14 GP data structure for German (GE), Portuguese (PO) and Spanish (SP)

Lang Training Evaluation Development

Speakers
EN 89 15 10
GP 233 21 24

Total 322 36 34

Utterances
EN 8000 800 1000
GP 22548 2084 2398

Total 30538 2834 3398

Words
EN 144323 13404 16081
GP 431429 41925 47515

Total 575752 55329 63596

Table 15 Multilingual system set structure by languages

and development sets for English had to be done. This is because the training set define
by the WSJ recipe includes approximately six times more words than each language
in the GP data base. The final redefinition of each English set can be observed in
Table 15 as well as the rest of the details that totally described the data to be used in
the multilingual ASR development stage. No changes were made in the GP sets.

4.2 Evaluation metric
The performance of a speech recognition system is typically measured by comparing
the recognized word sequence (hypothesis) with the reference word sequence that was
obtained by manual transcription [38]. In CSR systems there are three types of errors:

∙ Insertion: An extra word is added to the the recognized word sequence
∙ Substitution: A correct word in the word sequence is replaced by an incorrect

word
∙ Deletion: A correct word in the word sequence is omitted.

To determine the recognition accuracy, the recognized word string has to be align
against the correct word string, and then compute the number of the corrected, sub-
stituted, deleted and inserted words. This alignment can be obtained using a dynamic
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4 Experimental part

programming algorithm [39]. Word error rate (WER) is the metric of first choice for
determining the quality of automatically derived speech transcriptions. If there are 𝑁
words in the reference transcript, and alignment with the speech recognition output
results in 𝑆 substitutions, 𝐷 deletions, and 𝐼 insertions the word error rate can be
readily calculated as

𝑊𝐸𝑅 = 𝑆 + 𝐷 + 𝐼

𝑁
× 100% (7)

4.3 Implementation of ASR in KALDI

4.3.1 KALDI framework

KALDI is an open-source toolkit for speech recognition research written in C++ [40].
The standard workflow provides a robust starting point. Recipes, which are templates
for training acoustic models on a given speech data, are divided into different stages
that correspond to the feature extraction, training, evaluation and decoding. KALDI
is theoretically grounded in the finite states machines (recall Sec. 2.2.5). The basic
operations that support this framework are:

Composition
Transducer operation for combining different levels of representation.

Determinization
Transformation of a non-deterministic weighted automaton into an equivalent deter-
ministic automaton. This operation is applied to remove redundancy, thereby reducing
the time and space needed to process the string.

Minimization
This operator outputs an automaton 𝐵 which has the least number of states and the
least number of transitions among all deterministic weighted automata equivalent to
the input 𝐴.

Epsilon removal
Operation that removes epsilon transitions from transducer. If an epsilon is used as
output and input label, transitions do not produce either any or output symbol, so the
removal can be perform without losing function of the transducer.

4.3.2 Setup of recipes stages
To build the monolingual and multilingual ASR systems, the standard s5 recipe struc-
ture was implemented. The modifications made to the original recipe are also explained
in the following section

Stage 0: Data & lexicon & language preparation

The first step to complete according to the presented ASR architecture in Fig. 1 corre-
sponds to the front-end module or feature extraction processing. However, in practice
an additional step is required. Stage 0 prepares the data into a common standardized
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4.3 Implementation of ASR in KALDI

Disambiguation sym. Silence phones Optional silence
Token Phone Token Phone Token Phone

EN <SPOKEN NOISE> spn

<SPOKEN NOISE> spn

!SIL sil<UNK> spn
<NOISE> spn

!SIL sil

GP <unk> spn <unk> spn !SIL sil!SIL sil

Table 16 Assignment of disambiguation symbols, silence and nonsilence phones for EN and
GP languages

format. The goal after the execution of this stage is

∙ Definition of training, evaluation and development sets. The arrangement of these
three sets is shown in Table 15.

∙ Creation of L and G files based on the input lexicon dictionary and language model
respectively.

∙ Definition of disambiguation symbols, optional and silence phones Although all
languages were assigned the same representation of the disambiguation symbol
and optional/silence phones, their token vary between EN and GP languages. Ta-
ble 16 presents the tokens and representation used.

∙ Definition of the silence and non silence number of states. These two parameters
were setup using 3 and 5 number of states respectively. KALDI makes use of the
CD phones when the option --position-dependent-phones true is used in the
script prepare_lang.sh.

∙ Definition of the pruning threshold. As mentioned in Sec. 3.4, the language model
probabilities are specified in a text file. Therefore, KALDI during this stage recal-
culates some probabilities from the non-pruned language model files. Sec. 2.2.5.
The chosen threshold is 107.

This stage outputs multiple files, all necessary for execution of further steps. Moreover,
most of them are automatically and successfully generated if correct input data is set.
More details can be found in the official webiste of KALDI [40].

Implemented modifications

1. Initially all databases work with their own complete audio resources. Conse-
quently, the first implemented change was addressed to resize the training, evalu-
ation and development set of English. To perform this task the data preparation
script local/EN/cstr_wsj_data_prep.sh was modified. The added lines are in-
tended to make sure that the new dimensions are equal or less than the maximum
amount of audio resources each database counts with. An example of this instruc-
tion is shown in the following piece of code.
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4 Experimental part

Listing 4.1 Re-definition of the training set for EN.
if [ ‘wc -l < train_si284 .flist ‘ -gt $train ]; then

head -$train train_si284 .flist > train_resize .flist
fi

2. The WSJ does not include any lexicon in the corpus, thus CMUdict (version 0.7a)
was utilized as base dictionary (recall Section 3.2.2). The developed ASR system
in this thesis was not meant to handle lexical stress markers, thus such symbols
were removed from the original lexicon (numbers 0, 1 and 2). The mapping from
the standard CMUdict pronunciation to X-SAMPA representation is carried out
by an additional script which is not included in the standard WSJ recipe. This
script is found in local/lexicon_convert.pl.

3. The GP data base provides, per language, the possibility customize the char-
acters to use during the acoustic model training by the default files located in
local/GP/gp_norm_dict_().pl and conf/GP/xsampa_map/() − the parenthe-
sis represent GE, PO, and SP. In addition to this, there is an additional script
supplied by the standard recipe, local/GP/gp_norm_trans_().pl, which basi-
cally converts the input text into UTF-8 encoding. Unfortunately a correct map-
ping was not obtained by the example scripts available in KALDI distribution;
as a result an independent conversion script was developed. The scripts for GE,
PO and SP were written altogether with the CMUdict mapping in the same file
local/lexicon_convert.pl. The word "rítmica" taken from Portuguese language
is used in the following example to illustrate the incorrect conversion. The correct
X-SAMPA representation of the character RR (IPA: K) is R, but the incorrect
representation rr was obtained by the GP scripts:

Dictionary: {{RR WB} I+ TJ I M I K {AX WB}}
GP PO script: rr i" t’ i m i k 6
lexicon_convert.pl: R i" t’ i m i k 6

4. Attention has to be paid when running the script local/GP/gp_data prep.sh be-
cause it internally runs another script, local/GP/gp_convert_audio.sh, which
requires availability of the tool sox from the path.sh. It is recommended then to
ensure that sox is ready to use somewhere in the recipe, the local directory was
chosen in developed system. To set this tool up in the recipe the following lines,
that can be obtained from the file path.sh, have to be run:

$PWD/tools/shorten-3.6.1/bin
SOX_BIN=‘pwd‘/tools/sox-14.3.2/bin

5. Because the recognition task does not mix different languages up, the LMs do not
have to be merged as the acoustic data. However; when the LM is adapted to the
multilingual system, the pronunciation dictionary that covers all possible words to
recognize across the different languages has to be used. In other words, when a LM
is adapted to a given dictionary, KALDI employs certain numeration to identify
the words and phones covered by the lexicon; so if a different numeration is used
at any stage of the recognition task the system will automatically collide yielding
incorrect results. This can seen in the script local/ML/ml_format_data.sh the
commands to generate the grammar G: arpa2fst are fed with the multilingual
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4.3 Implementation of ASR in KALDI

System Alignment Training

Mono MFCCs -
steps/train_mono.sh

Tri1 Align delta-based triphones Train delta + delta-delta triphones
steps/align_si.sh steps/train_deltas.sh

Tri2 Align delta + delta-delta triphones Train LDA-MLLT triphones
steps/align_si.sh steps/train_lda_mllt.sh

Tri3
Align LDA-MLLT triphones

with fMLLR Train SAT triphones

steps/align_fmllr.sh steps/train_sat.sh

Table 17 Overview of the training and alignment algorithms of the built Multilingual speech
recognition system

dictionary.

Stage 1: MFCC Feature Extration & CMVN

The system up to this stage counts with the information enough concerning what acous-
tic recourses are going to be parametrized. The algorithm implemented to perform the
feature extraction corresponds to the built-in script steps/make_mfcc.sh. The settings
of this stage are

∙ Frame length: 25 ms
∙ Time shifting: 10 ms
∙ Window: Hamming
∙ Number of Mel frequency bins: 23
∙ Number of cepstra in MFCC computation (including C0): 13
∙ Sampling frequency: 16 KHz
∙ The CMVN is computed per speaker by steps/compute_cmvn_stats.sh.

Although in Fig. 3 it is specified that the dynamic features delta (Δ) and delta-delta
(ΔΔ) are intrinsically incorporated in the MFCC processing, KALDI estimates these
derivatives as an independent process to MFCC feature estimation.

Stage 2: Acoustic model training

Different acoustic modeling units, decoding phases and training algorithms were used
to build the multilingual ASR system presented in this thesis. The majority of them
are based on triphone models since they represent a phoneme variant in the context of
two other left and right phonemes. (discussed in Sec. 2.2.1).

KALDI optimizes the estimation of the acoustic model parameters by cyclically repeat-
ing an alignment and training phase in every acoustic training step. By aligning the
audio to the reference transcript with the most current acoustic model in each training
step, additional algorithms can then be used to improve or refine the parameters of
the model. A review of the training procedure with the used respective scripts per
model are presented in Table 17. Despite four different systems where implemented in
this multilingual system (mono, tri1, tri2, tri3), KALDI offers the possibility to include
further processing, e.g. Subspace gaussian mixture model adaptation and Maximum
mutual information.
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Implemented modifications
1. An additional level to the standard KALDI directory structure was added. This

means that the output files had to be redirect to the either monolingual or mul-
tilingual system. The structure is then exp/{EN,GE,ML,PO,SP}, to stored the
recognition data, mfcc/{EN,GE,ML, PO,SP}, and lastly data/{EN,GE,ML,PO,SP}
to store the acoustic features and data preparation scripts respectively. The addi-
tion of these directories, implemented only to avoid confusion between les, makes
the addition to the language code to all paths called in the recipe.

2. The scripts presented in Table 17 include additional input arguments such as the
number of leaves, or HMM states, or the number of Gaussians. Theoretically one
HMM state could be assigned per phone, but that would not be convenient be-
cause phonemes vary considerably depending on if their position within a word
(beginning, middle or end, discussed in Sec. 2.2.1). The numbers will largely de-
pend on the amount of data, number of phonetic questions, and goal of the model.
In Section ?? it is shown that numbers increase as the acoustic model is refine
with further training algorithms.

3. The tri2 system of the standard GP recipe is obtained by calculating SAT directly
from the dynamic features Δ and ΔΔ (tri1). Despite this procedure is not incorrect
whatsoever, it does not fit in the proposed systems described in Table 17. For this
reason, the tri2 system implemented in the original GP recipe was replaced by
the pertinent processing of LDA + MLLT; and default tri2 was renamed as tri3
taking as source to align the results from the new tri2 system.

Stage 3: Making graphs

The script utils/mkgraph.sh was the only script implemented to make the 𝐻∘𝐶∘𝐿∘𝐺
final graph. This script creates a fully expanded decoding graph that represents the
LM, pronunciation dictionary, context-dependency, and HMM structure. The output
is a finite state transducer that has word-IDs on the output, and pdf-IDs on the input
(these are indexes that resolve to Gaussian Mixture Models) [41]. No changes were
made in this section.

Stage 4: Decoding

The last stage of the ASR system corresponds to generate the most likely word sequence
given a model and an utterance. The script decode.sh is used for the majority of the
acoustic models (mono, tri1, and tri2); whereas the system tri3 employs the script
decode_fmllr.sh.

Implemented modifications The script which assigns the score in the decoding phase
is usually found in the directory local/ based on the standard KALDI recipe structure.
Now, considering that an additional directory level was added to the file structure, it
was necessary to provide to the both decoding scripts additional information about the
path where the score file is located, and also what score file must be used depending on
the language to recognize. To include this information, an additional input argument
was added to each decoding script. This explains why all the decoding files are run from
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4.4 Results and discussions

the directory local instead of scripts found in steps. The following snippet of code is
taken from local/decode.sh which illustrate the modifications just mentioned.

Listing 4.2 Inclusion of the language variable ($lang) to find the proper score file
[ ! -x local/$lang/score.sh ] && \

echo "Not scoring because local/$lang/score.sh
does not exist or not executable ." && exit 1;

local/$lang/score.sh --cmd "$cmd" $scoring_opts \
$data $graphdir $dir || { echo "$0: Scoring failed . \
( ignore by ’--skip - scoring true ’)"; exit 1; }

fi

Arrangement of steps to run the multilingual system

The system built in this work offers the possibility to perform the recognition task based
on either a monolingual or multilingual system with a shared acoustic model. To run
one of these systems it is necessary to run the script run.sh according to the following
input command order:

run.sh <no. stage> <acoustic model> <language model>

∙ Number of stage: The assignation of each stage correspond to the same numeration
previously presented.

∙ Acoustic model: Up to date, five options can be used as second input argument.
They are: EN, GE, ML, PO, SP. When a different argument from ML is intro-
duced, the script will utilize the monolingual acoustic model selected, and therefore
the obtained results will be those obtained by a monolingual system with no con-
tribution of any other language. In the other hand, when ML is chosen a third
input argument has to be specified so that the system identifies what language
model must be be employed. An exception to this is when the stage 2 is run. This
is because to specify the language to recognize is not needed when training the
acoustic models.

∙ Language mode: As mentioned before, this option has to be specified when the
multilingual acoustic model is used, i.e., when ML is introduced as second input
argument. The language model defines what language is going to be used to build
the HCLG graph in stage 3 and decode them in stage 4.

4.4 Results and discussions
The aim of this work is to develop a multilingual ASR system whose output for the
implemented languages is as close as possible to the input word sequence. The following
methodology was followed in order to ascertain a low WER across the covered languages.
The results presented in this section are then based on these steps

∙ Preliminary test. A initial test was needed to perform in order to ensure that the
resolved phoneme set did not produce incoherent results.

∙ Evaluation of multilingual systems. This means that the performance of each
ASR system is evaluated individually when no contribution of other languages is
presented.

∙ Integration of all languages into one single multilingual system whose acoustic
model is shared.
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4.4.1 Preliminary test
The need to evaluate and verify the accuracy of the resolved mapping for English; and
to make certain that the implemented modifications did not interfere with the system
performance led to building an ASR system using the TIMIT data base as first step.
Table 18 shows the number of speakers, utterances, and phones the training, and test
sets comprise defined by the standard KALDI recipe for continuous speech recognition
task - s5.

Train Eval
Speakers 462 168

Utterances 4620 1680
Words 39699 14518

Table 18 Assignation of the train and evalation tests in TIMIT database

Some advantages of testing the degree of correctness of the determined mapping using
this corpus are related to the database size and literature availability. The size of this
corpus was convenient in this evaluation phase since the computational time to carry
out different experiments is not long. Additionally, the disposal of multiple literature
resources ease the comparison between the typical WER values obtained by its corpus.
The obtained WER results after the X-SAMPA representation are presented below in
Table 19. The reference WER value presented in the last column was obtained by a
HMM/GMM system whose total number of phone has been folded to a total of 39
phones [42]. The difference between these two results may stem from the number of
data used during the training step. The system where the reference comes from did not
use the complete training set for such purpose, instead just 2205 utterances were used.
Nevertheless, the obtained result endorse the defined X-SAMPA conversion.

Mono Tri1 Tri2 Tri3 Ref
WER 60.70 55.98 54.78 53.04 61.5

Table 19 Obtained WER for multilingual system based on TIMIT database

4.4.2 Monolingual ASR systems
The second step described in the methodology corresponds to test each database inde-
pendently from the others. This stage has two main objectives

∙ Ensure coherent results before merging all recipes. Getting consistent results in
this stage also indirectly guarantees that the additional directory levels to the
standard KALDI structure were correctly implemented.

∙ Evaluate the impact that the language mode and speaker sets have on the final
WER

In Section 1, it was mentioned that the architecture of the back-end processing consists
of three different resources. Two out of those three, the dictionary and the language
model, are independent of the feature observation. Since obtaining the highest possible
WER was pursued in this thesis, to asses what resources offer the best recognition had
to be done. The different parameters to evaluate were the available language models and
speaker sets. Different language models, 3-grams together with their pruned version; as
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4.4 Results and discussions

well as development and evaluation speaker sets were tested before proceeding with the
multilingual ASR system. Fig. 11 presents the obtained WERs per system when varying
the language model and sets. The same results can also be found in Table. 20

Mono Tri1 Tri2 Tri3
Tg Tgpr Tg Tgpr Tg Tgpr Tg Tgpr

EN Eval 19.29 20.87 9.56 10.22 8.16 8.38 6.79 7.49
Dev 31.31 32.70 15.97 16.94 13.86 14.87 11.41 12.30

GE Eval 42.54 46.98 23.53 25.64 21.76 24.20 17.62 19.19
Dev 24.92 26.66 14.72 16.26 13.65 15.14 10.57 11.59

PO Eval 38.49 54.89 26.99 32.92 26.10 30.32 24.86 28.93
Dev 41.39 49.40 29.09 32.34 27.41 30.13 25.99 28.46

SP Eval 25.22 26.45 12.84 13.27 11.58 11.96 10.16 10.54
Dev 39.11 39.99 23.55 24.04 21.36 21.76 17.77 18.17

Table 20 WER results when evaluation set and language model change. Results presented are
obtained from monolingual systems.

From the results presented in Fig. 11 and Table. 20, the following ideas can be concluded:

∙ WER is not significantly affected when the language model changes from trigram
to trigram prune, and additionally it could be say that the small changes are
somehow predictable. In other words, if it is of interest to know what WER can
be obtained using a pruned trigram model, an approximation can be estimated
from the complete language model. This can also be declared in a reciprocal way,
i.e. from a comprehensive trigram model the WER of its pruned version can be
rapidly estimated. It is important to mention that this statement can be set out
for these experiments thanks to the selected threshold since an improper beam
setup might discard possible correct hypothesis.

This conclusion is valid for all languages included in this work. It can be seen in
the case of English that the initial difference between trigram and trigram prune
WERs is 1.5%, but as the system is more iteratively trained the difference between
these two values becomes smaller. As a result, it can be said that the WER is go-
ing to be roughly ±1.5 from the known value. The starting difference for German
language is approximately 4.5% and similarly to English, this value decreases up
to 2.5%. This behaviour can also be extended to Spanish language.

∙ The obtained WERs are strongly dependent on the set used to evaluate the recog-
nition performance. Similar values of WERs were expected because the system
used to recognise each set was the same depending of the language. Since no con-
clusion can be obtained from the values obtained at this stage of the methodology,
it is decided to include both sets in the multilingual system. Nevertheless, it can
be observed what set per language produces the better results. The lowest WER
for English, Portuguese and Spanish are obtained by the evaluation set. For Ger-
man the lowest WER is given by the development set.

∙ Portuguese exhibits the lowest accuracy. Despite the improvements of the WER
through the different systems, the highest accuracy obtained for this language is
not as good as the other languages. Because of this poor results it is expected to
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Figure 10 Comparison between the obtained WER when language model changes from trigram
to trigram prune
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4.4 Results and discussions

have a higher WER when this language is merged with the others. Because all GP
data bases were automatically added in the recipe, a error in the code is discarded.
Such poor error rate can be explain by the language model used (Sec. 3.4). The
language model in this language presents the higher OOV which is around 10%.

4.4.3 Shared acoustic modeling
Once the monolingual systems were successfully implemented, the integration of all lan-
guages into a shared acoustic model recognizer was followed according to the method-
ology. Table 21 presents the WER obtained for each language and Fig. 11 graphycally
compare the performance obtained with the shared acoustic model to the monolingual
system results.

Some characteristics already seen in the monolingual system such as the dependence on
the test set or the regular decrease of WER are still appreciated in the obtained results
of the multilingual ASR system. Some interesting aspects are:

∙ The performance of the recognition task per language decreased. The reduction
obtained are 1.44% for English, 3.61% for German, 2.45%, and lastly 2.46% for
Spanish. This values were taken from the lowest WER results which were obtained
by the system Tri3. Theoretically is known that when monolingual system are
joint, the performance degradation is 5-9% compared to the monolingual systems.
This range considers the fact when an acoustic model is shared [2]. Therefore, it
can be said that the integration of the system was correctly implemented although
some sets presented no poor results.

∙ The difference between the development an evaluation test of German language is
not also presented in this study, but has also been matter of debate in different
studies [43] and [44]. The difference results obtained by these two sets stems from
the incomplete words that can be found in the German vocabulary. Thus any
systematic error concerning the implementation of this multilingual system can
be disregarded.

∙ English and Spanish are the languages with highest amount of training data since
their number of non-shared phones is less than the number of Portuguese and
German non-shared phones. This fact is reflected in the obtained WER for these
two languages because they still are the languages with the lowest WER despite
the integration

∙ The total CD phones without the phoneme set integration would have led to a total
of 758 different phones. However, once the system applied the context dependency
to the defined inventory list it could be seen that a reduction of 50.9% was obtained.
Half of the phonetic units were reduced.
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Figure 11 WER results for the evaluation and development test when the sets are redefine to
the size of the multilingual system
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4.4 Results and discussions

Set Lang Mono Tri1 Tri2 Tri3
ML Ref ML Ref ML Ref ML Ref

EN Eval 34.75 20.87 13.42 10.22 11.04 8.38 8.55 7.49
Dev 49.49 32.70 21.43 16.94 18.56 14.87 14.16 12.30

GE Eval 66.60 46.98 36.63 25.64 31.98 24.20 24.28 19.19
Dev 41.83 26.66 22.53 16.26 20.37 15.14 13.72 11.59

PO Eval 53.98 54.89 36.90 32.92 33.97 30.32 31.51 28.93
Dev 57.64 49.40 36.55 32.34 33.84 30.13 30.77 28.46

SP Eval 40.50 26.45 17.43 13.27 14.86 11.96 12.42 10.54
Dev 52.28 39.99 28.53 24.04 25.46 21.76 21.21 18.17

Table 21 WER results for the evaluation and development test when the sets are redefine to
the size of the multilingual system
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5 Conclusions
A multilingual acoustic shared model speech recognition system was developed in this
work. The developed ASR system was based defining a phoneme set that matches the
similarities across the covered languages. Current system described in this work cov-
ers the following West-European languages: English, German, Portuguese and Spanish.

Phonetic alphabet unification X-SAMPA representation was used to unify the dif-
ferent phonetic representations used by covered languages in available resource, exactly
it was CMUBET used in CMUDICT for English and alphabets used in GlobalPhone
corpora for German, Portuguese and Spanish. Special attention has to be paid when
the different representations are looked in the IPA representation since this is the bridge
from any phonetic representation to X-SAMPA. Some changed had to me make in order
to find a consistent representation across the languages. It was shown that the map was
correctly resolved by different test. The preliminary test, using TIMIT, produced re-
sults to the ones that can be found in the literature. Additionally, the degradation of the
WER when the sahed acoustic model was implemented did not exceed the percentages
that normally can be encounter when multilingual systems share acoustic parameters.
Final combination of selected four languages reduced the size of the phoneme inventory
by 50.9%.

Kaldi implementation The presented code was developed in such way that each new
language can be implemented with rather small effort. In the case of GlobalPhone the
integration could be done automatically. However, it always is important to check the
output that the scripts used for the conversion of phones and change of encoding output
the expected results. Different incoherent results were obtained during the development
of this multilingual system since that information was not checked. If a maual mapping
is desired to develop, the scripts containing the conversion of all languages can be
reused.

Final monolingual and multilingual systems Created LVCSR system was tested using
avaialble corpora used also for AMs training and language models publicly available to
anybody. The obtained WERs for monolingual systems for particular languages using
two versions of language models (full-one and pruned-one) were very close, therefore
the language model utilised in the multilingual system was just the pruned-one for
each language. This decision also made the running times faster. Obtained WERs
also varied according to the language. Previous studies have shown that results using
the development set defined by the GP recipe for German produces better results.
Although the results for Portuguese were the worst, the results of the evaluation and
development sets of remained almost the same with no prominent change depending on
the set. There are different reason that might be attributed to such result. Worse WER
may be related to its language model since it has the highest rate of Out-of-Vocabulary
words. The other one, concerning the regular WER between the sets, may be tie to
the amount of data in these two sets. The difference between the words comprised by
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the development and evaluation set of Portuguese is 2510. This difference is the lowest
one in contrast to other laguages; therefore it may explain the similarity of the results
obtained for these two sets. English and Spanish always presented a rather low WER.
Also, the error of these two languages did not significantly change from a monolingual
system to the acoustic shared multilingual system.

Futher work This work has extended previous work on multilingual acoustic modeling
developed for East-European languages and telephone speech [45]. It covers 4 West-
European languages for which full-band acoustic data sampled by 16 kHz were available.
The integration of both of these systems could be done to cover all available West- and
East-European languages (in downsampled form of telephone speech). In addition to
that, an improvement of the presented system could be achieved usign further advanced
acoustic modeling as SGMM, MMI or DNN-HMM based ones. Different ways to find
each improve the recognition per language individually can be also explored. To use
different languages models for Portuguese could decrease the obtained WER. In the
case of German the results could be improved by trying another dictionary. Lastly, to
avoid the different between the test sets, it should be suitable to collect more acoustic
resources in order to count with more data in the development and evaluation sets,
thereby the results by these two sets are similar.
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